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Abstract

In air traffic management, the aircraft separation requirement is defined by a mini-
mum horizontal distance and a minimum vertical distance that the aircraft have to
maintain. Since this requirement defines a cylinder around each aircraft rather than
a sphere, the three-dimensional Euclidean distance does not provide an appropriate
basis for the definition of time of closest approach. For instance, conflicting aircraft
are not necessarily in loss of separation at the time of closest three-dimensional Eu-
clidean distance. This paper proposes a definition of time of closest approach that
characterizes conflicts in a three-dimensional airspace. The proposed time is defined
as the time that minimizes a distance metric called cylindrical norm. An algorithm
that computes the time of closest approach between two aircraft is provided and the
formal verification of its main properties is reported.
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1 Introduction

In a three-dimensional airspace, the separation requirement for two aircraft is spec-
ified as a minimum horizontal separation, which is typically 5 nautical miles, and
a minimum vertical separation, which is typically 1000 feet. This requirement is
graphically illustrated by a cylinder, called the protected zone, surrounding each
aircraft. A loss of separation between two aircraft is an overlapping of the aircraft’s
protected zones. A conflict is a predicted loss of separation within a lookahead time
interval, which is typically a few minutes long.

A natural question in the context of state-based separation assurance systems
is, “What is the time of closest approach between two aircraft?” In a 2-dimensional
airspace, the answer to this question is clear: the time of closest horizontal approach
between two aircraft is the time when the Euclidean horizontal distance between the
aircraft is minimal. The time of closest horizontal approach characterizes horizontal
conflicts in the sense that two aircraft are in horizontal conflict if and only if they
are in horizontal loss of separation at this time.

In a 3-dimensional airspace, the protected zone is a cylinder rather than a sphere.
Typically, this cylinder is 30 times wider than high. Thus, the three-dimensional
Euclidean distance does not properly reflect whether the aircraft are separated or
not. For instance, vertical separation of one thousand feet may be safe, but horizon-
tal separation of one thousand feet is not. Thus, in contrast to the 2-dimensional
case, the time that minimizes the 3-dimensional Euclidean distance does not provide
an appropriate definition for the time of closest approach between the aircraft.

The problem addressed by this paper is the mathematical and algorithmic defi-
nition of a time of closest approach between two aircraft in a 3-dimensional airspace.
This time is defined as the time that minimizes a distance metric called cylindrical
norm. As indicated by its name, the cylindrical norm accommodates the notion
of aircraft distance to the fact that the protected zone is a cylinder. The rest of
this paper is organized as follows. Section 2 explains the mathematical notation
used in this paper. Section 3 reviews the definition of the time of closest hori-
zontal approach. Section 4 proposes a definition of time of closest approach for a
3-dimensional airspace and states its main property, i.e., that the proposed time of
closest approach correctly characterizes 3-dimensional conflicts. Section 5 summa-
rizes this work and presents concluding remarks.

2 Mathematical Notation

The mathematical development presented in this paper has been fully formalized in
the Prototype Verification System (PVS) [6]. PVS is a mechanical theorem prover
that consists of an expressive specification language based on higher-order logic and a
proof checker for this logic.1 For readability, this paper uses standard mathematical
notation instead of PVS syntax.

1PVS is electronically available from http://pvs.csl.sri.com. The development presented in
this paper is electronically avaialable from http://shemesh.larc.nasa.gov/people/cam/ACCoRD.

http://pvs.csl.sri.com
http://shemesh.larc.nasa.gov/people/cam/ACCoRD


The constructions in this paper consider an airspace with two distinguished air-
craft, the ownship and the intruder, that are potentially in conflict. The state of
an aircraft consists of its current position and velocity information, and it is repre-
sented by vectors in a Euclidean geometry. In a 2-dimensional airspace, the separa-
tion requirement is defined by minimum horizontal distance D. In a 3-dimensional
airspace, the separation requirement is defined by a minimum horizontal distance
D and a minimum vertical distance H. The values D and H are considered to be
parametric constants.

The symbols R, R2, and R3 represent the sets of real numbers, the set of 2-
dimensional vectors, and the set of 3-dimensional vectors, respectively. Vector vari-
ables are written in boldface and can be denoted by their components. For example,
if w ∈ R3 and u ∈ R2, then w = (wx, wy, wz) and u = (ux, uy). The expression
w(x,y) denotes the projection of w in the horizontal plane, i.e.,2

w(x,y) ≡ (wx, wy).

The notation ‖w‖ refers to the Euclidean norm of the vector w and the notation
w ·w′ refers to the dot product of the vectors w and w′. The expression 0 represents
the zero vector, i.e., the vector whose components are 0.

Aircraft trajectories are represented by a point moving at constant linear speed,
i.e., if the current state of an aircraft is given by the position s and velocity vector
v, its predicted position at time t is s+ tv. In this paper, the position vector so and
the velocity vector vo represent the current state of the ownship. Similarly, si and
vi represent the current position and velocity vectors of the intruder aircraft. As it
simplifies the mathematical development, the formalization presented here usually
considers a relative view where the intruder is fixed at the origin of the coordinate
system. In this paper, the vectors s and v will commonly be used to denote the
relative position so − si and the relative velocity vo − vi, respectively.

Aircraft predicted trajectories are considered valid for a lookahead time interval,
which is specified by a lower bound B and an upper bound T . The notation [B, T ],
where 0 ≤ B < T , represents the interval of real numbers greater than or equal to
B and less than or equal to T , i.e.,

[B, T ] ≡ {x ∈ R | B ≤ x ≤ T}.

The values B and T are parametric constants. The upper bound T is usually a
real number. However, the formalism presented here also considers the special case
where T has an infinite value, i.e., T = ∞. In that case, it is assumed that for
all x ∈ R, x < ∞ and min(x,∞) = x. It is remarked that this abuse of notation
is a syntactical convenience and should not be understood as an extension of real
arithmetic with infinite values. For instance, the value ∞ is not considered to be
in R. Hence, if T = ∞, the expression [B, T ] simply represents the interval of real
numbers greater than or equal to B. Furthermore, particular care is taken in this
paper to avoid the use of ∞ in arithmetic expressions other than min(x,∞) and
relational operations such as x <∞.

2The symbol ≡ is used in this paper to introduce mathematical definitions.
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Finally, by convention, names of predicates and functions used in the specifica-
tion of the problem are written in italics. Functions that represent algorithms to be
implemented in a programming language are written in typewriter font.

3 Time of Closest Horizontal Approach

The horizontal separation requirement can be understood as an imaginary circle of
diameter D around each aircraft and a horizontal conflict between two aircraft as a
future overlapping of these circles. In this paper, an alternative but equivalent view
is considered where the intruder is surrounded by a circle, called protected zone, of
radius D. From this perspective, a horizontal conflict between these two aircraft is
equivalent to the existence of a time within a lookahead time interval at which the
ownship is in the interior of the intruder’s protected zone.

3.1 Horizontal Conflict

Given a lookahead time interval [B, T ], where T is possibly infinite, a horizontal
conflict between the ownship and the intruder aircraft occurs when there is a time
t ∈ [B, T ] such that the horizontal distance between the aircraft is less than D, i.e.,

‖(so + tvo)− (si + tvi)‖ < D,

where so,vo, si, and vi are all in R2. Since (so + tvo) − (si + tvi) = (so − si) +
t (vo − vi), the predicate that characterizes horizontal conflict can be defined in
terms of the relative vectors s = so − si and v = vo − vi, i.e., the relative position
and velocity vectors, respectively, of the ownship with respect to the intruder. The
predicate HorizontalConflict?[B,T ], parametric on the lookahead time interval [B, T ],
is formally defined as follows.

HorizontalConflict?[B,T ](s,v) ≡ ∃ t ∈ [B, T ] : ‖s + tv‖ < D. (1)

3.2 Time of Closest Horizontal Approach

This section presents a mathematical derivation of the time of closest horizontal
approach between two aircraft for a given lookahead time interval.

Definition 1. The time of closest horizontal approach between the ownship and the
intruder aircraft, for a lookahead time interval [B, T ], where T is possibly infinite,
is the minimum time τ in the interval [B, T ] that satisfies

∀ t ∈ [B, T ] : ‖s + tv‖ ≥ ‖s + τ v‖, (2)

where s = so − si and v = vo − vi.

From the definition above, it is not clear that such time τ exists. The rest of
this section provides an algorithm definition of time of closest horizontal approach
and the proof that it satisfies Definition 1.
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The norm ‖s+tv‖ is minimized precisely when its square ‖s+tv‖2 is minimized.
This squared norm is equal to ‖v‖2 t2 + (2 s · v) t + ‖s‖2, which is a quadratic
polynomial in the variable t. For any quadratic polynomial of the form a t2 + b t+ c
where a > 0, the minimum occurs at the point t = − b

2 a . Thus, if v 6= 0, then the
minimum of the norm ‖s + tv‖ is attained at time − s·v

‖v‖2 . If that time is less than
B, then every t ≥ B satisfies ‖s + tv‖ ≥ ‖s + B v‖. Furthermore, if that time is
greater than T , then every time t ≤ T satisfies ‖s + tv‖ ≥ ‖s + T v‖. If v = 0,
the distance between the aircraft remains constant. In that case, the minimum time
that satisfies Formula (6) is B.

This motivates the definition of the function tcha[B,T ] that computes the time
of closest horizontal approach for the lookahead time interval [B, T ].

tcha[B,T ](s,v) ≡

{
min

(
T, max

(
B, − s·v

‖v‖2

))
if v 6= 0,

B otherwise.
(3)

It has been proved in PVS, using basic algebra, that the time tcha[B,T ](s,v) satisfies
Definition 1.

Lemma 1. For any t ∈ [B, T ], ‖s + tv‖ ≥ ‖s + τ v‖, where τ = tca[B,T ](s,v).

The next theorem follows immediately.

Theorem 2. HorizontalConflict?[B,T ](s,v) holds if and only if ‖s+τ v‖ < D, where
τ = tcha[B,T ](s,v).

This theorem states that the ownship and intruder aircraft are in horizontal
conflict within the lookahead time interval [B, T ] if and only if they are expected to
be in horizontal loss of separation at the time of closest horizontal approach, which
is given by the function tcha[B,T ].

4 Time of Closest Approach in a 3-Dimensional Airspace

In the relative frame of reference, the protected zone surrounding the intruder air-
craft is a cylinder of half-height H and radius D. A conflict between the ownship
and intruder aircraft occurs when there is a time within the lookahead time interval
at which the ownship is in the interior of the intruder’s protected zone.

4.1 Conflict

A mathematical definition of conflict is given as follows. The ownship and the
intruder aircraft are in conflict during the time interval [B, T ], where T is possibly
infinite, if there exists a time t ∈ [B, T ] when vertical separation is lost, i.e,

|(soz + t voz)− (siz + t viz)| < H,

and horizontal separation is lost, i.e.,

‖(so + tvo)(x,y) − (si + tvi)(x,y)‖ < D,
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Figure 1. Time (τ) of closest Euclidean approach in a 3-dimensional airspace

where so,vo, si, and vi are all in R3. As in the case of horizontal conflict in For-
mula (1), the predicate that characterizes conflict is defined on the relative vectors
s = so − si and v = vo − vi.

Conflict?(s,v) ≡ ∃ t ∈ [B, T ] : |sz + t vz| < H and

‖s(x,y) + tv(x,y)‖ < D.
(4)

4.2 Euclidean Distance

Identically to the construction in Section 3.2, the time min(T, max(B, − s·v
‖v‖2 )),

when v 6= 0, minimizes the 3-dimensional Euclidean distance between the aircraft
during the time interval [B, T ], where s and v are in R3. If the protected zone
around an aircraft were a sphere instead of a cylinder, this formula would suffice
as the definition of the time of closest approach. However, since the protected zone
is a cylinder, this definition does not properly characterizes 3-dimensional conflicts.
Indeed, it does not satisfy the property that the aircraft are in conflict during the
time interval [B, T ] if and only if they are in loss of separation at this time.

If the dimensions of D and H were comparable, the minimal 3-dimensional
Euclidean distance could be an indicator of the time of closest approach. However,
the typical protected zone, i.e. where D = 5 nautical miles and H = 1000 feet,
is 30 times wider than it is high. Figure 1 provides a side view of the protected
zone on the X,Z-plane where the axes have the same scale. In Figure 1, assume
that vy = 0 and that τ is the time of minimum Euclidean distance for the relative
position s = so − si and relative velocity vector v = vo − vi. This figure illustrates
that although the aircraft are in conflict, they are not in loss of separation at time τ .

Hence, an appropriate definition of the 3-dimensional time of closest approach
between two aircraft, which are surrounded by cylindrical protected zones, cannot
be defined on terms of the minimum Euclidean distance between the aircraft.

5



4.3 Cylindrical Norm

An alternative notion of aircraft distance, which is based on cylindrical norms, is
proposed in [3]. Given a cylinder of radius D and half-height H, the cylindrical
norm of a vector w ∈ R3, with respect to D and H, is the quantity

‖w‖cyl ≡ max
(
|wz|
H

,
‖w(x,y)‖

D

)
. (5)

With this norm, R3 is a metric space in the sense of real analysis [7]. That is,
the cylindrical norm satisfies the following properties for any vectors w and u in R3.

• Positivity: ‖w‖cyl ≥ 0.

• Nullity: ‖w‖cyl = 0 if and only if w = 0

• Scalability: ‖kw‖cyl = |k| ‖w‖cyl for any k ∈ R

• Triangle Inequality: ‖w + u‖cyl ≤ ‖w‖cyl + ‖u‖cyl

The cylindrical distance between the vectors w and u is defined as the cylindrical
norm ‖w − u‖cyl.

The following lemma and theorem, which are proven in PVS, follow directly from
Equation (4) and Equation (5).

Lemma 3. The ownship and the intruder aircraft are in loss of separation if and
only if ‖so − si‖cyl < 1.

Theorem 4. Let s = so − si and v = vo − vi be in R3, Conflict?B,T (s,v) holds if
and only if there exists t ∈ [B, T ] such that ‖s + tv‖cyl < 1.

4.4 Time of Closest Approach

Using the cylindrical norm, this section generalizes the construction in Section 3.2
to define the time of closest approach for a three dimensional airspace, where the
protected zone is a cylinder.

Definition 2. The time of closest approach between the ownship and the intruder
aircraft, for a lookahead time interval [B, T ], where T is possibly infinite, is the
minimum time τ in the interval [B, T ] that satisfies

∀ t ∈ [B, T ] : ‖s + tv‖cyl ≥ ‖s + τ v‖cyl, (6)

where s = so − si and v = vo − vi.

As in the case of Definition 1, the fact that there exists a time τ that satisfies
Formula (6) is not obvious. The rest of this section provides an algorithmic definition
of the time of closest approach and the proof that it satisfies Definition 2.

The time of closest horizontal approach is constructed by finding the minimum
time in a time interval that minimizes the 2-dimensional Euclidean norm. This
idea can be generalized to define the time of closest approach in a 3-dimensional
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airspace by finding the minimum time in [B, T ] that minimizes the cylindrical norm
‖s + tv‖cyl. It suffices to minimize the square ‖s + tv‖2cyl of this norm. This square
can be written as the maximum of two quadratic polynomials as follows.

‖s + tv‖2cyl = max

(
(sz + t vz)2

H2
,
‖s(x,y) + tv(x,y)‖2

D2

)

= max
(

1
H2

(v2
z t

2 + (2 sz vz) t+ s2z),

1
D2

(‖v(x,y)‖2 t2 + (2 s(x,y) · v(x,y)) t+ ‖s(x,y)‖2)
)
.

(7)

It can be proved that the minimum of the function max(p(t), q(t)), where t ranges
over the interval [B, T ] and p and q are two quadratic polynomials of the form
p(t) = a t2 + b t + c and q(t) = e t2 + f t + g, is reached at a point τ that satisfies
one of the following conditions.

• τ = B, or

• τ = T and T 6=∞, or

• τ is equal to either − b
2a or − f

2e , or

• τ is such that p(τ) = q(τ). If p and q are not equal and a 6= e, then there
are at most two solutions to the equation p(t) = q(t). If this equation has a
solution, then the discriminant of the polynomial (a− e) t2 + (b− f) t+ (c− g)
must be nonnegative. This discriminant is given by (b− f)2− 4 (a− e)(c− g).
Alternatively, if a = e and b 6= f , then there is exactly one solution to the
equation p(t) = q(t), namely − c−g

b−f . In both cases, it is easy to see that there
are only finitely many possibilities for τ .

Applying this reasoning to the maximum in Equation (7), there are at most
six possibilities for the time τ . The first four possible times are B, T , − sz

vz
, and

− s(x,y)·v(x,y)

‖v(x,y)‖2
. The other two possibilites are the solutions to the equation

1
H2

(v2
z t

2 + (2 sz vz) t+ s2z) =
1
D2

(‖v(x,y)‖2 t2 + (2 s(x,y) · v(x,y)) t+ ‖s(x,y)‖2). (8)

Equation (8) can be rewritten as

A t2 +B t+ C = 0, (9)

where

A =
v2
z

H2
−
‖v(x,y)‖2

D2
, (10)

B =
2 sz vz

H2
−

2 s(x,y) · v(x,y)

D2
, (11)

C =
s2z
H2
−
‖s(x,y)‖2

D2
. (12)
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Equation (9) has a solutions for t precisely when the discriminant B2 − 4AC is
nonnegative. In this case, there are two possible solutions, which are equal if this
discriminant is zero, and these solutions are given by the quadratic formula. This
motivates the following definition of the function tca[B,T ].

tca[B,T ](s,v) ≡
let

A =
v2
z

H2
−
‖v(x,y)‖2

D2
,

B =
2 sz vz

H2
−

2 s(x,y) · v(x,y)

D2
,

C =
s2z
H2
−
‖s(x,y)‖2

D2
in

T := ∅;
if v(x,y) 6= 0 then

T := T ∪
{
−

s(x,y) · v(x,y)

‖v(x,y)‖2

}
;

endif;
if vz 6= 0 then

T := T ∪
{
−sz

vz

}
;

endif;

if A 6= 0 and B2 − 4AC ≥ 0 then

for ι ∈ {1,−1} do

T := T ∪

{
−B + ι

√
B2 − 4AC

2A

}
;

endfor;
elsif A = 0 and B 6= 0 then

T := T ∪
{
−C
B

}
;

endif;
τ := B;
for t ∈ T do

if t > B and ‖s + tv‖cyl < ‖s + τ v‖cyl then

τ := t;
endif;

endfor;
returnmin(τ, T );

(13)

It has been proved in PVS that the time tca[B,T ](s,v) satisfies Definition 2.
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Lemma 5. For any t ∈ [B, T ], ‖s + tv‖cyl ≥ ‖s + τ v‖cyl, where τ = tca[B,T ](s,v).

The proof of Lemma 5 uses the fact that the quantity ‖s + tv‖cyl is a convex
function of t, which can be proved using basic algebra. From that lemma, the next
theorem follows immediatly.

Theorem 6. Conflict?(s,v) holds if and only if |sz + τ vz| < H and ‖s(x,y) +
τ v(x,y)‖ < D, where τ = tca[B,T ](s,v).

Theorem 6 states that tca[B,T ] properly characterizes 3-dimensional conflicts,
i.e., the ownship and the intruder are in conflict during the time interval [B, T ] if
and only if they are expected to be in loss of separation at time tca[B,T ](s,v).

5 Conclusion

Mathematical and algorithmic definitions of time of closest approach have been pre-
sented for two and three-dimensional airspace geometries. Although the definition
of time of closest horizontal approach is well-known (see for example [4]), the fact
that this definition characterizes horizontal conflicts appears to be a novel approach
to this subject. The major contribution of this paper is the definition of time of clos-
est approach for a three-dimensional airspace and the formal proof of its properties.
The definition of this time is based on the notion of cylindrical distance, originally
proposed in [3].

Since the typical protected zone is very flat, researchers in state-based separation
assurance systems usually define the time of closest approach in the horizontal plane.
This is the approach followed for example by [4], where a 3-dimensional conflict
detection and resolution algorithm is proposed. In the case of conflicting aircraft,
special care has to be taken when the time of closest horizontal approach does not
lie in the interval of conflict.

The cylindrical distance at time of closest separation can be used as a measure
of threat severity in a 3-dimensional airspace. Indeed, this non-dimensional value is
less than 1 in the case of a conflict. The closer this value is to 1, the closer the relative
trajectory is to the envelope of the protected zone. A similar non-dimensional value ε
is proposed in [2] and used in [1] as a measure of conflict risk. This value ε represents
the ellipse distance of an ellipsoid enclosed within the cylindrical separation zone.

Neither the time of closest horizontal approach nor the value ε characterize three-
dimensional conflicts as tca[B,T ] does. It is believed that the proposed time of closest
separation allows for simpler separation assurance algorithms and yields a notion
of distance in a 3-dimensional airspace that is more appropriate for a cylindrical
protected zone. Indeed, this notion is at the base of the formally verified conflict
prevention algorithm presented in [5].
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